
Los Alamos
NATIONAL LABORATORY

LA-UR-

Approved for public release;

distribution is unlimited.

Title:

Author(s):

Submitted to:

Form 836 (8/00)

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the University of California for the U.S.

Department of Energy under contract W-7405-ENG-36. By acceptance of this article, the publisher recognizes that the U.S. Government

retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or to allow others to do so, for U.S.

Government purposes. Los Alamos National Laboratory requests that the publisher identify this article as work performed under the

auspices of the U.S. Department of Energy. Los Alamos National Laboratory strongly supports academic freedom and a researcher’s right to

publish; as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its technical correctness.

02-4248

PARSIM: Parallel Architecure Simulation Tool

Nick Moss

LANL Student Symposium
Los Alamos, NM
August 2002

Nick Moss
nickm@lanl.gov
CCS-3 / Modeling, Algorithms and Informatics Group

PARSIM: Parallel Architecture Simulation Tool
Application and Scalability Issues in the Evaluation of ASCI/Extreme-scale Architectures

 node [
 ID 0 # use the convention that the relative entity idenity
 # of an SMP node is always zero.
 INSTANCEOF "TSMPNode"
 PARAMS [
 STRING %I # absolute entity identity
 INT 256 # mean size of messages (drawn at random from an
 # exponential distribution)
 INT 10000 # mean delay between messages (drawn at random from an
 # exponential distribution)
 INT 2000000 # the last time a message will be sent
]
]

 # A network interface card.
 nic [
 ID 1 # use the convention that the relative entity
 # identity of a network interface cars is always
one
 INSTANCEOF "TNIC"
 PARAMS [
 STRING %I # absolute entity identity
 STRING "CircuitAlgorithm" # the type of routing algorithm used
 INT 50 # delay between receipt of message and start of
 # packet sending
 INT 1000 # delay between packets
 INT 320 # packet size
 INT 5000 # acknowledgement timeout
 STRING "Quadrics1" # routing method
]
]

 # A switch.
 switch [
 INSTANCEOF "TSwitch"
 PARAMS [
 STRING %I # absolute entity identity
 STRING "CircuitControl" # the type of flow control used
 INT 8 # number of ports
 INT 35 # delay between receipt and retransmission of
 # packets
]
 ...
 MAP [FROM 5000.10000(LINKOUT4) TO 5000.20000(LINKIN0) DELAY 5]
 MAP [FROM 5000.20000(LINKOUT0) TO 5000.10000(LINKIN4) DELAY 5]
 MAP [FROM 5000.10000(LINKOUT5) TO 5000.20001(LINKIN0) DELAY 5]
 MAP [FROM 5000.20001(LINKOUT0) TO 5000.10000(LINKIN5) DELAY 5]
 MAP [FROM 5000.10000(LINKOUT6) TO 5000.20002(LINKIN0) DELAY 5]
 MAP [FROM 5000.20002(LINKOUT0) TO 5000.10000(LINKIN6) DELAY 5]
 MAP [FROM 5000.10000(LINKOUT7) TO 5000.20003(LINKIN0) DELAY 5]
 MAP [FROM 5000.20003(LINKOUT0) TO 5000.10000(LINKIN7) DELAY 5]
 MAP [FROM 5000.10001(LINKOUT4) TO 5000.20000(LINKIN1) DELAY 5]
 MAP [FROM 5000.20000(LINKOUT1) TO 5000.10001(LINKIN4) DELAY 5]
 MAP [FROM 5000.10001(LINKOUT5) TO 5000.20001(LINKIN1) DELAY 5]
 MAP [FROM 5000.20001(LINKOUT1) TO 5000.10001(LINKIN5) DELAY 5]
 MAP [FROM 5000.10001(LINKOUT6) TO 5000.20002(LINKIN1) DELAY 5]
 MAP [FROM 5000.20002(LINKOUT1) TO 5000.10001(LINKIN6) DELAY 5]
 MAP [FROM 5000.10001(LINKOUT7) TO 5000.20003(LINKIN1) DELAY 5]
 MAP [FROM 5000.20003(LINKOUT1) TO 5000.10001(LINKIN7) DELAY 5]
 ...

DML code parameterizes switches, nodes, and maps
interconnections.

High-fidelity extreme-scale(1000+ processor) simulations execute
on a parallel machine of smaller size in order to meet memory
requirements and reduce computational time.

Approximate memory, processing time, and disk usage as a
function of simulation time for a 512 processor statistical / uniform
packet distribution model as executed on a 256 processor Alpha-
Linux cluster.

n.node.MESSAGE_DELAY 10
n.node.PACKET_DELAY 7
n.node.PACKET_SIZE 320
n.node.METHOD Quadrics2
n.node.BUS_BANDWIDTH 200
n.nic.NET_BANDWIDTH 400
n.nic.ACK_BYTES 640

s.PACKET_DELAY 20
s.NET_BANDWIDTH 400

l1:s[16]
l2:s[16]
l3:s[16]
l4:n[64]

wire l1:l2
wire l2:l3 {1,0,2,3,4,5}
wire l3:l4

On compilation, the DML model is
parsed and cast from C++ component
classes.

An idealized model description for a 3
switch-layer, 64 node machine. Here,
the component properties are uniform.
In real systems, interconnect
properties may vary widely. The
description language allows for precise
control over each component while
maintaining usability.

PARSIM

Compile to DML

Parse DML

Build Executable

ID Time Location Action Source Target Size Type
0:1 10 0 MessageSent 0 1 100 Null
0:1 13 10000 MessageReceived 0 1 100 Null
0:1:1 526.513 10000 PacketSent 0 1 100 Head
0:1:1 543.513 20000 PacketReceived 0 1 100 Head
0:1:1 562.513 20000 PacketSent 0 Null 100 Head
0:1:1 575.513 10001 PacketReceived 0 Null 100 Head
0:1:1 686.114 10000 PacketSent 0 Null 0
AckNow
0:1:1 703.114 20000 PacketReceived 0 Null 0
AckNow
0:1:1 722.114 20000 PacketSent 0 Null 0
AckNow
0:1:1 735.114 10001 PacketReceived 0 Null 0
AckNow
0:1:1 735.114 10001 PacketSent 0 Null 0 Okay
0:1:1 752.114 20000 PacketReceived 0 Null 0 Okay
0:1:1 752.114 20000 PacketSent 0 Null 0 Okay
0:1:1 765.114 10000 PacketReceived 0 Null 0 Okay
0:1:1 785.864 10000 PacketSent 0 Null 0 Tail
0:1:1 785.864 10000 PacketSent 0 Null 0
EopGood
...

Execution output from test model X
Regression Test

main()

Test A
Source

all.diff.test testA.diff.test all.constraints.test
PARSIM

Test A
Params

Test B
Params

Test D
Params

Test C
Params

Configuration
Test A
Model

Test B
Model

Test C
Model

Test D
Model 1

2

3

4

8

Interpret and Summarize Results
5

7

9

Test B
Source

Test D
Source

Test C
Source

Abstract
DaSSF (Darthmouth Scalable Simulation Framework),
provides an optimized discrete event framework for PARSIM.
Modifications made to DaSSF expand platform-specific
limitations and adapt DaSSF to the effective use of shared-
memory in a distributed environment allowing the use of a 256
processor Alpha/Linux cluster. Memory requirements scale
linearly with simulation time and portions of DaSSF's code
reliant on 32-bit addressing have been modified to support 64-
bit addressing to allow longer simulation times and a larger
number of simulated nodes. An automated verification system
using regression testing techniques helps ensure the system
maintains consistency after each set of code changes and can
be executed simultaneously using multiple test models and on
a group of remote machines. DML (domain modeling
language) allows for modularity in model generation and
representation. Models may include various Quadrics
hardware interconnects, switches, NIC's, SMP nodes
arranged in fat-tree networks or unbalanced topologies that
model their counterparts in current ASCI machines. A large
set of components and their interconnection complexity stress
the need for an alternative interface. A compact model
description language provides a solution with improved
handling in readability, creation, modication and structuring
control.

PARSIM, an extensible discrete-event simulation-based tool
enables detailed analysis, evaluation, and modeling of existing
and proposed massively-parallel computer architectures.
Continuing refinements and development of higher-fidelity models
expand predictive and modeling capability of ASCI and extreme-
scale machines but present new challenges and greater system
requirements. Scalability, execution requirements of large models
with long time runs, verification, and model representation and
generation are important factors which determine PARSIM's
effectiveness.

Framework and Implementation
Darthmouth Scalable Simulation Framework, a C++ implementation of SSF (Scalable Simulation Framework specification),
provides an optimized discrete event and synchronization management system with support for shared-memory and distributed
parallelism. PARSIM component classes define network components, routing methods, messages, packets and other constructs
and inherit from the base classes defined by the SSF specification: Entity, Event, Process, and Input and Output Channels.

0

50

100

150

200

Memory(GB)
Processing Time(hours)
Disk Space(GB)

2 x 108 Discrete Time Steps

Scaling the Simulation Framework
-High fidelity models, particularly those using direct execution or
emulated workloads and a high number of simulated nodes executed
for long simulation times push the limits of available disk space,
memory and computational time, requiring modifications to software,
more hardware or both.

-A 64-node, 4 processor per node Alpha cluster utilizing Quadrics
hardware and running dual boot Linux and TRU 64 is ideal for
execution of large processor models but is not fully supported by the
current DaSSF distribution.

-Portions of DaSSF related to shared-memory mapping and MPI
interaction are modified to work with the cluster. Aside from the
benefits of higher computational power, memory requirements are
distributed, allowing a much larger memory space.

-DaSSF’s reliance on 32-bit system calls in shared-memory mapping
and other sections of code assumes 32-bit addressing, placing a limit
of a 2 gigabyte heap per DaSSF process. Fortunately large models
may be simulated in a highly distributed fashion at a low performance
cost. For a 512 processor model, two simulated nodes may be
assigned to each UNIX process. This configuration yields an effective
address space of 512GB and allows simulations on the order of 1000+
processors with times exceeding 100,000,000 discrete time-steps.

Verification
-An automated regression testing system helps ensure the system maintains consistency after any changes are made to the code. The test
program supports modular test models and scripts which can be executed in batch and on a group of remote machines.

-The testing mechanism uses predefined data files which are passed to an arbitrary number of test scripts which can then perform diff-matching,
constraint verification, etc.. At the beginning of the process, PARSIM is built(2) with the current source files and executed with the test
models(3) specified in the configuration(1). The output(5) is compared against the source data files for the specified model(8) and the script
returns a boolean value and to indicate pass or fail along with additional test-specific information(9). Results are gathered and summarized for
each test model and are used to interpret the net result.

Conclusion

Fractal-tree representations of an L-level fat-
tree network illustrate connection complexity
as the number of layers and switches
increases.

L=2 L=3 L=4

-A high-level model description abstracting
wiring details in DML models provides a
compact notation for specification and use of
homogenuous and custom components.

-This approach allows for improved handling of
large PARSIM models in readibility, creation,
modification, and structure control.

-The description file is compiled into DML,
preserving the ability to control portions of the
model not parameterized in the description.

Machine Representation and DML Generation
-The interconnection networks from switch
and node wiring results in lengthy DML code
and poses difficulties in generation,
modification, and readability. Other factors
complicate management and require an
automated creation approach for any model
of significant size.

The simulation of extreme-scale architectures presents significant demands in computational resources and challenges in complexity management. For
models of increasing size and simulation time, high demands for memory, disk space, and computational time were solved by adapting the simulation
framework to effective use of a shared-memory distributed environment. A specialized test system defines and implements a simplified interface that
modularizes scripting, automates batch execution and data collection, speeding verification procedures that become time-consuming and difficult to manage
with large models. For model representation, scaling presents a challenge in achieving both representational flexibility and usability. A condensed
representation language provides an abstraction layer, compiling simplified models into native representation and finds a suitable balance of both.

Message transmission through a PARSIM-simulated Quadrics
network.

Node 1 NIC 1 Switch 1 Switch 3Switch 2 NIC 2 Node 2

TMessage representscommand code memory access
on PCI bus

packetization &
route lookup

TPacketHead representsfirst flit

per-packet
overhead

switching

TPacketHead switching

TPacketHead switching

TPacketHead

TPacketAckNow representsAckNow token

TPacketAckNow

TPacketAckNow

TPacketAckNow

fAckBytes have
been sent

TPacketOkayTPacketOkay

TPacketOkayTPacketOkay

TPacketTail representslast flit

TPacketTail

TPacketTail

TPacketTail

TPacketEopGood TPacketEopGood TPacketEopGood TPacketEopGood
memory access

on PCI bus

TMessage

whole packet has
been sent

fAckBytes must be sent and the
TPacketAckNow must have been

received.

The whole packet must have been
sent and TPacketTail must have

been received.

Class diagram of high-level PARSIM components

